On the Number of Partitions of an Integer in the m-bonacci Base

نویسنده

  • Luca Q. ZAMBONI
چکیده

— For each m > 2, we consider the m-bonacci numbers defined by Fk = 2 k for 0 6 k 6 m− 1 and Fk = Fk−1 +Fk−2 + · · ·+Fk−m for k > m. When m = 2, these are the usual Fibonacci numbers. Every positive integer n may be expressed as a sum of distinct m-bonacci numbers in one or more different ways. Let Rm(n) be the number of partitions of n as a sum of distinct m-bonacci numbers. Using a theorem of Fine and Wilf, we obtain a formula for Rm(n) involving sums of binomial coefficients modulo 2. In addition we show that this formula may be used to determine the number of partitions of n in more general numeration systems including generalized Ostrowski number systems in connection with Episturmian words. Résumé. — Pour m > 2, on définit les nombres de m-bonacci Fk = 2k pour 0 6 k 6 m− 1 et Fk = Fk−1 +Fk−2 + · · ·+Fk−m pour k > m. Dans le cas m = 2, on retrouve les nombres de Fibonacci. Chaque entier positif n s’écrit comme une somme distincte de nombres de m-bonacci d’une ou plusieurs façons. Soit Rm(n) le nombre de partitions de n en base m-bonacci. En utilisant un théorème de Fine et Wilf on déduit une formule pour Rm(n) comme somme de coefficients binomiaux modulo 2. De plus, nous montrons que cette formule peut-être utilisée pour déterminer le nombre de partitions de n dans des systèmes généraux de numération incluant les systèmes de nombres d’Ostrowski généralisés associés aux suites episturmiennes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Efficient partitions of graphs

A set $S = {u_1,u_2, ldots, u_t}$ of vertices of $G$ is an efficientdominating set if every vertex of $G$ is dominated exactly once by thevertices of $S$. Letting $U_i$ denote the set of vertices dominated by $u_i$%, we note that ${U_1, U_2, ldots U_t}$ is a partition of the vertex setof $G$ and that each $U_i$ contains the vertex $u_i$ and all the vertices atdistance~1 from it in $G$. In this ...

متن کامل

Stirling number of the fourth kind and lucky partitions of a finite set

The concept of Lucky k-polynomials and in particular Lucky χ-polynomials was recently introduced. This paper introduces Stirling number of the fourth kind and Lucky partitions of a finite set in order to determine either the Lucky k- or Lucky χ-polynomial of a graph. The integer partitions influence Stirling partitions of the second kind.

متن کامل

Improved Univariate Microaggregation for Integer Values

Privacy issues during data publishing is an increasing concern of involved entities. The problem is addressed in the field of statistical disclosure control with the aim of producing protected datasets that are also useful for interested end users such as government agencies and research communities. The problem of producing useful protected datasets is addressed in multiple computational priva...

متن کامل

CFD analysis of natural convection heat transfer in a square cavity with partitions utilizing Al2O3 nanofluid

In the present study, natural convective heat transfer in a partitioned square cavity utilizing nanofluids is studied. The vertical left and right walls are considered as the hot and cold walls, respectively and the partitions assumed to be adiabatic. The nanofluid used in this study is Al2O3 with the volume fraction of 20%. It is assumed that nanofluid is a single phase f...

متن کامل

Design of Persian Karbandi: The Problem of Dividing the Base from a Mathematical Viewpoint

Karbandi is the structure of a kind of roofing in Persian architecture. One of the main issues related to the design of karbandi is that, due to its geometrical structure, it is not possible to design any desired karbandi on a given base. Therefore, it is necessary for the designer to be able to discern the proper karbandi for a given base. The most critical stage in designing a karbandi is whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006